DEVELOPMENT OF ENHANCED MACHINE LEARNING METHODS FOR THE AUTOMATIC MODULATION CLASSIFICATION OF QAM SIGNALS

dc.contributor.authorSavenkov, Andrii
dc.date.accessioned2025-09-19T08:23:23Z
dc.date.available2025-09-19T08:23:23Z
dc.date.issued2025-06-09
dc.description.abstractThis study evaluates multiple machine learning approaches for Automatic Modulation Classification (AMC) of five digital modulation schemes: BPSK, QPSK, 8PSK, 8QAM, and 16QAM. The research implements and compares four classification methods: Gaussian Mixture Models, multinomial regression with polynomial features, nearest neighbor approach, and Convolutional Neural Networks. The system is integrated into a web service using Elixir/Phoenix framework and Python. Experimental results demonstrate high accuracy across all methods, with CNNs achieving 99% accuracy on simulated signals and consistent 99% accuracy on real signals from a CDM-625 modem. The study provides a practical solution for deployment in modern communication systems.
dc.identifier.citationSavenkov, Andrii. (2025). DEVELOPMENT OF ENHANCED MACHINE LEARNING METHODS FOR THE AUTOMATIC MODULATION CLASSIFICATION OF QAM SIGNALS. Kyiv: American University Kyiv. URI:
dc.identifier.urihttps://er.auk.edu.ua/handle/234907866/158
dc.language.isoen_US
dc.publisherManuscript
dc.subjectAutomatic Modulation Classification
dc.subjectMachine Learning
dc.subjectDigital Signal Processing
dc.subjectConvolutional Neural Networks
dc.subjectGaussian Mixture Models
dc.subjectHigher Order Cumulants
dc.subjectSoftware-Defined Radio
dc.titleDEVELOPMENT OF ENHANCED MACHINE LEARNING METHODS FOR THE AUTOMATIC MODULATION CLASSIFICATION OF QAM SIGNALS
dc.title.alternativeРозробка вдосконалених методів машинного навчання для автоматичної класифікації модуляції QAM-сигналів
dc.typeThesis

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Savenkov_Development.pdf
Size:
1.74 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: