MULTIMODAL RETRIEVAL AUGMENTED GENERATION SYSTEM

dc.contributor.authorYuvzhenko, Denys
dc.date.accessioned2025-10-10T09:49:05Z
dc.date.available2025-10-10T09:49:05Z
dc.date.issued2025-01-23
dc.description.abstractThis study presents an asynchronous, web-based Retrieval-Augmented Generation (RAG) system that integrates multimodal inputs (text, images, tables) to enhance information retrieval and generation in various contexts. The system is developed in Python and hosted on AWS, combining Chroma DB for vector storage and Anthropic’s Claude-3-Haiku LLM model, which is accessible via AWS Bedrock. By leveraging modern cloud capabilities, the solution scales efficiently and handles diverse data modalities in real time. Through systematic experiments, this project highlights the effectiveness of multimodal embedding techniques for refining retrieval accuracy and providing context-aware responses. The architecture’s modular design supports seamless feature integration, making it adaptable for different use cases such as customer support, educational tools, and content creation. Key findings emphasize the role of vector databases in dynamic information updates and confirm that large language models, when appropriately curated and grounded, can produce high-quality, relevant outputs
dc.identifier.citationYuvzhenko, Denys. (2025). MULTIMODAL RETRIEVAL AUGMENTED GENERATION SYSTEM. Kyiv: American University Kyiv. URI: https://er.auk.edu.ua/handle/234907866/164
dc.identifier.urihttps://er.auk.edu.ua/handle/234907866/164
dc.language.isoen_US
dc.publisherManuscript
dc.subjectRetrieval-Augmented Generation
dc.subjectMultimodal
dc.subjectAsynchronous Architecture
dc.subjectAWS
dc.subjectLLM
dc.subjectRAG
dc.titleMULTIMODAL RETRIEVAL AUGMENTED GENERATION SYSTEM
dc.title.alternativeМУЛЬТИМОДАЛЬНА СИСТЕМА ПОШУКУ З ДОПОВНЕНОЮ ГЕНЕРАЦІЄЮ
dc.typeThesis

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Yuvzhenko_Multimodal.pdf
Size:
359.11 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: