APPLICATION OF OPENAI API FOR SEMANTIC CONTENT ANALYSIS IN INTELLIGENT E-LEARNING SYSTEMS

dc.contributor.authorRybak, Mykola
dc.date.accessioned2024-02-28T13:51:28Z
dc.date.available2024-02-28T13:51:28Z
dc.date.issued2024
dc.description.abstractThe thesis aims to describe the practical aspects of using OpenAI API in intelligent e-learning systems. The proposed work contains three main parts. The first part covers a background overview, theoretical aspects of a Large Language Model (LLM), transformer-based Natural Language Processing (NLP) architecture description, and use cases of different transformers. Introduces the term semantic unit and defines its main elements and connection with the capstone project. The second part concerns the rationale of the chosen model’s type for the capstone project and its description and implementation. This part covers requirements for the capstone project, C4 architecture diagrams, an overview of essential modules, libraries, and code examples of the implemented solution leveraging OpenAI API. The final part demonstrates further research on architecture improvements for better semantic content analysis and interaction with intelligent e-learning systems, including a combination of encoder-decoder and embedding models in the solution.
dc.identifier.urihttps://er.auk.edu.ua/handle/234907866/42
dc.language.isoen_US
dc.subjectLLM
dc.subjectOpenAI API
dc.subjectsemantic unit
dc.subjectEncoder
dc.subjectDecoder
dc.subjectself-attention mechanism
dc.subjectprompt engineering
dc.subjectsemantic content analysis
dc.titleAPPLICATION OF OPENAI API FOR SEMANTIC CONTENT ANALYSIS IN INTELLIGENT E-LEARNING SYSTEMS
dc.title.alternativeЗАСТОСУВАННЯ OPENAI API ДЛЯ СЕМАНТИЧНОГО АНАЛІЗУ КОНТЕНТУ В ІНТЕЛЕКТУАЛЬНИХ СИСТЕМАХ ЕЛЕКТРОННОГО НАВЧАННЯ
dc.typeThesis

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Rybak_Application of OpenAI.pdf
Size:
4.76 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: