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Analysis from National Technical University of Ukraine “lgor Sikorsky Kyiv Polytechnic
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Trend to Web GIS

Desktop GIS

All work is done on your local machine.

Web GIS

Everyone's work is done by the
back-end server infrastructure.

Shared GIS
portal in web
browser
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Component of Web GIS
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Three components of Web GIS

Front-end portal

» Share content from desktop GIS

* View and work with content in a map viewer
* Bringin GIS items from web

* Produce outputs (maps, apps, reports)

Back-end server m Data store(s)

* Run GIS services that power your items * Host the data referenced by your items
* Handle all requests (zoom a map, find m * Facilitate instant data retrieval

a location, run an analysis tool) m * (Sometimes) Allow data editing from
« Scale processes based on traffic portal




Architecture of ArcGIS Enterprise %

ArcGIS
Web Adaptor

ArcGIS
Enterprise
portal

ArcGIS
Web Adaptor

ArcGIS Server

ArcGIS
Data Store
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Interaction with GIS

External clients
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WebGIS servises
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ArcGIS Enterprise is i 1 J‘ Flexible Collaborative

Desktop Server Portal

L 1=

allle.

Layer » Map service > Map image layer |

Feature class Feature service > Feature layer

Mosaic dataset Image service > Image layer

Address locator Geocode service *» Geocoder

Geoprocessing tool Geoprocessing service Web tool

. _—1 Web
3D scene > Scene service Scene layer —
—_| scenes




End-user products
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Building web apps gy

Arizona State University

Configurable App App Widgets
Apps XTemplateXBuilders / Component7 SDKs / APIs

easier, quicker more effort, more time
Sagi=e grained ﬁ ne-grainea
more black box more control

less coding more coding




ArcGIS Enterprise on

the Cloud
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Distribute Collaboration

Arizona State University

Sharing content in a secure, trusted pipeline

Familiar access control - group sharing model

Each participant keeps its own security settings

Automatic synchronization schedule

From To Networks of
Individuals

Organizations Organizations




Open sorce technology

GeoServer

‘OpenlLayers
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Spatial Data Science




Spatial analysis

Map by Dr. John Snow of London,

showing clusters of cholera cases in the 1854
Broad Street cholera outbreak. This was one of
the first uses of map-based spatial analysis.
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https://en.wikipedia.org/wiki/John_Snow_(physician)
https://en.wikipedia.org/wiki/London
https://en.wikipedia.org/wiki/Cluster_(epidemiology)
https://en.wikipedia.org/wiki/1854_Broad_Street_cholera_outbreak

Point Pattern Analysis

Objectives of point pattern analysis are:

1. Estimate intensity of point pattern
» Expected number of events per unit area
 Enables visualisation of the events
2. Study structural characteristics of the spatial distribution

« Determine If the events are random, clustered or regular
» Indicative of a process that is underlying the occurrence of events



Point Pattern Analysis
* Is the study of the spatial arrangements of points

In space.

* Is the evaluation of the pattern, or distribution, of
a set of points on a surface.

* It can refer to the actual spatial or temporal
location of these points or also include data from

point sources.



Analysing Point Patterns

Global and local study
Looking for outliers & clusters

Global — study properties for the entire dataset
Spatial statistic -> Avg nearest neighbour, Getis Ord,

Local — looking at behaviour related to neighbours
— Spatial Visual -> VVoroni maps (Outliers, Smoothing, Variation)
— Spatial statistic -> Local Moran’s I (Anselin)




1. Average nearest Neighbour

Calculates a nearest neighbour index based on the average
distance from each feature to its nearest neighbouring feature.
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1. Average nearest Neighbour

Average Nearest Neighbor Summary

Nearest Neighbor Ratio: 0.234537 Significance Level Critical Value
-value
z-score: -67.297047 m (p ) (z-scare)
0,01 mm <-2.58
p"’ﬂ'ﬂlue: 0.000000 0.05 0 -2.58--1.9&
010 3 -1.96--1.65
- [ -1.65-1.65
0.10 [ 1.65 - 1.96
o.0s [EO  1.96- 258
& Average Nearest Neighbor . . | S 0.01 W >258
e
Input Feature Class
Cheetah -]
Distance Method
ELICLIDEAM_DISTANCE -
[~ Generate Report (optional) P - -
| {Random]) I >
A tional
rea (optional) Significant Significant
OK l [ Cancel l [Enuironments... l [ Show Help ==

Clustered Random Dispersed

Given the z-score of -67.30, there is a less than 1% likelihood that this clustered pattern could
be the result of random chance.



1. Average nearest Neighbour

The Average Nearest Neighbor ratio i1s given as:
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where g is the observed mean distance between each feature and their nearest neighbor:
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and Dg is the expected mean distance for the features given a random pattern:

. 0.5 {
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In the previous equations, d; equals the distance between feature 7 and its nearest feature, n corre-
sponds to the total number of features and A is the total study area.




1. Average nearest Neighbour

The z 4nnN-score for the statistic 1s calculated as:

where:

where:

Do — Dg

ZANN = (4)
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2. Getis Ord- Hot Spot Analysis

This tool identifies statistically significant spatial clusters
of high values (hot spots) and low values (cold spots).




2. Getis Ord- Hot Spot Analysis

This tool works by looking at each feature within the context of neighboring features.
A feature with a high value is interesting, but may not be a statistically significant hot spot.

To be a statistically significant hot spot, a feature will have a high value and be surrounded by
other features with high values as well.

The local sum for a feature and its neighbors is compared proportionally to the sum of all
features;

When the local sum is much different than the expected local sum, and that difference is too
large to be the result of random chance, a statistically significant Z score results.



2. Getis Ord- Hot Spot Analvsis

The Getis-Ord local statistic 1s given as:
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where x; is the attribute value for feature j, wy 4 is the spatial weight between feature 2 and 3, n is

equal to the total number of features and:
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The (.’ statistic is a z-score so no further calculations are required.




2. Getis Ord- Hot Spot Analysis

Potential Applications

Applications can be found in crime analysis, epidemiology,
voting pattern analysis, economic geography, retail analysis,
traffic incident analysis, and demographics
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Hot Spot Analysis (Getis-Ord Gi¥) -

Getis Ord

IFarms_Cheetah ;I @
Input Field

-
Output Feature Class

Y\fermainsrvp00 1, shared.nust. natuserfiless\mor ti\Documents\ArcGIS\Default. gdb\Farms_Cheetah_HotSpots1 @

Conceptualization of Spatial Relationships
FIXED_DISTAMCE_BAMND -

Distance Mathod
EUCLIDEAM_DISTAMCE -

Standardization
MNOME
Distance Band or Threshold Distance (optional)

Self Potential Field (optional)

Weights Matrix File (optional)

*

QK ] [ Cancel ] [Envimnrnents... l [ << Hide Help




\Voronol maps

Thiessen (Voronoi) polygons

Polygons are created by joining together the sample points and drawing the
perpendicular bisectors of the joining segments. The intersections of these bisectors
determine the sides and the number of polygons, so that the perimeters of the

generated polygons are equidistant from designated points and the area of
Influence.

Initially Thiessen polygons were used for meteorological data analysis (rainfall
stations), but nowadays they are also applied as GIS analytical tool in studies to
determine areas of Influence (hospitals, fire stations, subway stations, shopping
malls, air traffic control, mobile, analysis of populations of plant species, etc.).



Voronol Maps

1. Link a point to its neighbouring points by straight lines.
2. Construct the perpendicular in the middle of each line.

3. The polygons defined by the intersection of this perpendicular are
the Thiessen polygons.




Voronol Maps
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Input Features

| lcLM_2007_08_rainfall - @
Cutput Feature Class
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|_ocal Morans Anselin

Given a set of weighted features, the Cluster and Outlier Analysis
tool Iidentifies clusters of features with values similar In
magnitude. The tool also identifies spatial outliers. To do this, the
tool calculates a Local Moran's | value, a Z score, a p-value, and a
code representing the cluster type for each feature. The Z score
and p-value represent the statistical significance of the computed
Index value.
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|_ocal Morans Anselin

The Local Moran’s I statistic of spatial association is given as:

T; — X = -
I,' — S2 -_Z' .'lU,f.j(iBj—X) (l)
i 1=1.3#1

where x; is an attribute for feature 7, X is the mean of the corresponding attribute, w; j is the spatial
weight between feature z and 7, and:
n -
¥ (g — X)°
52 __J=1y F#1 ~
— (2)
n —1
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|_ocal Morans Anselin

§ Closter and O poptie i i oo L sua

Input Feature Class
I Farms_Cheetah

Input Field
Output Feature Class
YWermainsrvpd0 1.shared. nust.natuserfilessmorti\Documents \ArcGIS \Default. adb\Farms_Cheetah_ClustersOutlie

Conceptualization of Spatial Relationships
INVERSE_DISTAMNCE

Distance Method
EUCLIDEAMN_DISTAMCE

Standardization
MNOME

Distance Band or Threshold Distance (optional)

Weights Matrix File (optional)

=] Farms_Cheetah_Clusters
[ Mot Significant
N HH
I HL
[JLH
B LL



Problems

» Correlation Problem
— Overlapping samples of |, similar local statistics.
— Problem if statistical significance Is sought.

« Small Sample Problem

— Statistics are based on a normal distribution, which iIs
unlikely for a small sample.

o Effects of Global Autocorrelation Problem

— If there Is significant overall global autocorrelation the local
statistics will be less useful in detecting “hot spots™.
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Criteria for merging into an agglomeration

* mass labor, educational, household, cultural and recreational trips
(pendulum migrations

* 1.5-hour accessiblility by transport corridors (railways, roads and
rivers)

« avallabilityof regular suburban electric trains, buses, atelamships

* locatingsubordinate settlements within their administrative regions
except for the most closely adjacemhes thecommunity of the
alrport, railway hukterminal, densesettlement along transport
corridors

36



The main factors of the formation of the Odesa
agglomeration

 Historical industrial retrospective of the settlemesystem
* Transportand logisticsupport

» Seaside location

* Recreationand tourism

37



Component evaluations of the agglomeration effec

« Density of mobile coverage of thterritory
 Brightnessf night lighting for the historical period 20842021
« Averagevalue of population densifyersons/km2

« Saturationof the territory with social service institutions: educational, medical, cultural
Institutions and provision of administrative services

* Transportaccessibility of the territory: 20, 40, 60, 8inutes.Industriatones

38



4/30/2024

Brightness of night lighting for the historical period 202@21
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4/30/2024

Average value of population density, persons/km2
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Typificationof communities of Odesa re
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Al In GIS

Deep Learning
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Moaification of SOM methods Tor
geospatial data processing

UsingKohonenseltorganization maps as
neural networks for geospatial data:
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Clustering of administrative units according to
parameters of sustainable land use

Classification of land cover of Ukraine Percentages| Feature

Study sample 90 445 <0,05
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Convolutional neural = [
network m »
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Recognition of solar batteries
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Recognitiorof trees

C (] file:///W:/arc_pro/qa/model_trees/model_metrics.html
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